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CONVERSION OF GLYCOSYL FLUORIDES INTO C-GLYCOSIDES USING ORGANOALUMINUM
REAGENTS. STEREOSPECIFIC ALKYLATION AT C-6 OF A PYRANOSE SUGAR
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Summary: Various furanosyl and pyranosyl fluorides react rapidly with alkyl, alkenyl,
alkynyl, and aryl organoaluminum reagents at or below room temperature to form C-

glycosides in 68-937 yields. Effective application of this procedure to a 6-fluoro 1,6-
anhydroglucose derivative produced a chain-extended sugar stereospecifically.

The great and diverse medicinal value of many E—glycosidesl has stimulated development of many
new synthetic methods for their preparation.2 Having previously utilized the very strong affinity
of aluminum for fluoride ionS,3 we were intrigued by the possibility that organocaluminum reagents
might activate glycosyl fluorides toward carbon-carbon bond formation.a With some new and
effective procedures now available for preparation of glycosyl fluorides,(‘b’5 we report here the
results in Table I for very mild C-glycoside formation via reaction of various glycosyl fluorides
with organoaluminum reagents (eq. 1).

Several features of the results are especially noteworthy, as follows: (1) various
unsaturated and therefore easily functionalized hydrocarbon groups can be introduced at the
anomeric center; (2) the requisite unsaturated organoaluminum reagents are easily prepared via
hydroalumination of terminal acetylenes or via organoaluminum chloride metathesis with
organolithium species; (3) diisobutylaluminum hydride can convert a furanosyl fluoride into its
parent tetrahydrofuran; (4) the reaction mechanism undoubtedly involves intermediate oxenium ions
as indicated, for example, by the same product being formed from both of the mannofuranosyl

fluorides; and (5) both furanosyl and pyranosyl fluorides undergo this type of C-glycoside
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formation.
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TABLE I.
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Bn = PhCHj.

and/or by high resolution mass spectrometry.
chromatography or by preparative tlc.
d1-BuyAlH + HC=CCGH, 3-n.

®Et,A1CL + LiC=CCgHy 3-n.
of phenyl group was observed after stirring overnight at room temperature.
amount of the anomeric fluoride:

4A11 new compounds were fully characterized spectroscopically and by microanalysis

Yield of product after purification by short path

see ref. S5a.

CAnomeric ratio determined by 14 NMR.
fEtAlC12 + 2 PhLi; highly selective transfer
8Containing a small
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The ready availability and cheap price of natural carbohydrates in many enantiomerically pure
forms has made these chiral, non-racemic compounds very popular starting materials for synthesis of
various complex organic molecules.6 However, attempts to transfer chirality predictably from the
ring-substituted carbon atoms of pyranose sugars to exocyclic (off—template7) positions (e.g. C-6)
have been rare.8 Some success has been achieved recently by incorporating C-6 into a second ring
and then allowing the rigidity of the bicyclic system to influence the stereochemistry of carbon-
carbon bond formation at C—6.7a’9 Toward this significant and challenging goal, we converted 6-

10 into the corresponding fluorides 2h and gg.ll

phenylthio l,6—anhydro-2;glucose derivative 2a
Although fluoride 2b, with acetate ester protecting groups, was unreactive toward triethylaluminum,
fluoride 2c, with benzyl ether protecting groups, reacted smoothly and stereospecifically to give
exclusively the exo-substitution product 3 in 84% yleld after purification by short path column
chromatography (eq. 2).12 The exo configuration of the ethyl group was established unambiguously
by '8 MR (J5 ¢ engo O Hzs H-1, H-1, B-3, B-4 and H-5, broad singlets)!® and by 3¢ MR [-CHycHj,

§ (CDC13) 27.8}; equivalent carbon atoms in derivatives with syn- interactions with neighboring
benzyloxy groups appeared in the range § 21.6-22.6. This extremely successful, stereospecific
alkylation at the off-template C-6 position of a 1,6-anhydroglucose system now can be applied to
highly stereocontrolled syntheses of several biologically important chain-extended carbohydrates,

including for example (—)-pestalotin (4), a synergist of the plant-growth regulator gibberellin.13

1.3 Equiv
Et3Al
2 > (2)
Toluene
Fz 0°, 15 min
2a, X=PhS, Y =H, R=Ac
2b, X=H, Y=F, R=Ac
e, X=H, Y=F, R=Bn
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